
www.manaraa.com

ORIGINAL ARTICLE

The sensitivity of the costs of reducing emissions
from deforestation and degradation (REDD) to future
socioeconomic drivers and its implications for mitigation
policy design

Mykola Gusti1,2 & Nicklas Forsell1 & Petr Havlik1 &

Nikolay Khabarov1 & Florian Kraxner1 &

Michael Obersteiner1

Received: 20 June 2017 /Accepted: 21 May 2018
# The Author(s) 2018

Abstract Climate change mitigation policies for the land use, land use change, and forestry
(LULUCF) sector are commonly assessed based on marginal abatement cost curves (MACC)
derived from optimization models or engineering approaches. Yet, little is known about the
space of validity of MACCs and how they are influenced by changes in main underlying
drivers. In this study, we apply the Global Forest Model (G4M) to explore the sensitivity of
MACCs to variation of socioeconomic drivers of deforestation, afforestation, and forest
management activities. Particularly, three key factors are considered: (I) wood price, as an
indicator of timber market developments; (II) agricultural land price, as a proxy representing
the developments on agricultural markets; and (III) corruption coefficient, representing the
progress in institutional development and measuring abatement costs use efficiency. The
results indicate that the MACCs are more sensitive to the corruption coefficient than to
agricultural land price and wood price. Furthermore, we find that the MACCs are more robust
with high carbon dioxide (CO2) price and that the sensitivity of the MACCs is higher at low
CO2 prices. In general, it can be concluded that when assessing medium-term mitigation
policies characterized by low CO2 prices, MACCs need to be developed in-line with institu-
tions currently in place. When designing long-term mitigation policy characterized by high
CO2 prices, the role of the analyzed drivers in MACCs estimation is less important.
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1 Introduction

To address forest-related climate mitigation measures globally reducing emissions from
deforestation and degradation (REDD) mechanism has been introduced into the United
Nations Framework Convention on Climate Change (UNFCCC). The introduction has been
evolving from 2005 to 2015 at the Conferences of the Parties (COP) to the UNFCCC (UN-
REDD 2016). Currently, implementation of the REDD mechanism is seen as one of the
important practices for reaching the 2° climate change mitigation target cost effectively. In
particular, REDD can be implemented relatively fast that allows more time for development of
mitigation technologies in other sectors (Houghton et al. 2015; Fricko et al. 2017). Inclusion of
REDD credits in the global carbon market may decrease the mitigation costs substantially
(Anger and Sathaye 2008; den Elzen et al. 2009; Bosetti et al. 2011; Angelsen et al. 2014;
Bosello et al. 2015).

The marginal abatement cost curve (MACC) relates the potential of greenhouse gas (GHG)
emissions reduction over a baseline to the costs of such reduction. MACCs are often used by
research institutions, consultancy companies, and governments for analysis of mitigation
policies (e.g., Valatin 2012; Wagner et al. 2012; Radov et al. 2012; McKinsey and
Company 2013; EPA 2013). MACCs are constructed, in particular using integrated assessment
models and provide information for analysis of such policy instruments as implementation of
a carbon dioxide (CO2) tax or a cap-and-trade system (Kesicki 2011; Kesicki and Strachan
2011). In particular, MACCs are used for simulation of emission permits, taking into account
the uncertainty of emissions (Pałka et al. 2018; Pickl 2018).

MACCs have been used for the analysis of REDD mitigation options in a number of
studies, for example (den Elzen et al. 2009; Coren et al. 2011; Bosetti et al. 2011; Angelsen
et al. 2014; Suyanto et al. 2014; Bosello et al. 2015). Kesicki and Strachan (2011) highlight the
importance of taking into account uncertainties of MACCs if the MACCs are used for decision
making. Experts employing MACCs for policy analysis need to be aware of the uncertainty in
the MACCs’ estimates, as this uncertainty can influence the outcome of the analysis. In the
case of implementation of a CO2 tax, an uncertain MACC may have a high influence on the
expected reduction of CO2 emissions (Fig. 1a). In the case of the introduction of a cap-and-
trade system, an uncertain MACC may have a high impact on the CO2 price that can be
expected from a specific volume of carbon allowances (Fig. 1b). Considering the uncertainty
of MACCs, authors commonly mention the importance of baseline and modeling assumptions
or ignorance of some factors when MACCs are constructed or applied (EPA 2013; Michaelova
and Jotzo 2003; Vogt-Schilb et al. 2015; Ekins et al. 2011; Schneider and McCarl 2006).

Klepper and Peterson (2003) studied sensitivity of MACCs in the energy sector of world
regions to energy prices using the Dynamic Applied Regional Trade (DART) computable general
equilibriummodel. Kesicki (2013) investigated the sensitivity ofMACCs to changes in fossil fuel
prices in the United Kingdom (UK) transport sector using the UK MARKAL (acronym for
MARKet Allocation) energy system model. The study found that the MACCs are more robust at
higher CO2 tax levels than at lower tax levels. Eory et al. (2014) performed MACC uncertainty
assessment for soil emissions of Scotland; they found that uncertainty in the economically
optimal greenhouse gas (GHG) abatement rate (where MACC intercepts the marginal damage
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cost curve) was high; however, the ranking of the cost-effective measures was found to be
relatively robust. Eory et al. (2018) studied uncertainty of MACC on the crop and soil
management mitigation options for northern UK agriculture applying Monte Carlo
method; in their study, the adoption rate of mitigation options and abatement rate are the
main uncertainty determinants. Webster et al. (2010) studied the influence of uncertainties
in gross domestic product (GDP) growth rate, the rate of autonomous energy efficiency
improvement, and the elasticities of substitution in the production functions on mitigation
policy mechanism using a static computable general equilibrium model of the United
States (US) economy. Schneider and McCarl (2006) studied how alternative assumptions
of economic market adjustments allowed the scope of mitigation alternatives and the
region of focus influence the mitigation potential and costs in agriculture and forestry
sectors in the US using the Agricultural Sector and Mitigation of Greenhouse Gas Model
(ASMGHG); they concluded that the different assumptions result in a range of economic
mitigation potentials from − 55 to + 85% compared to the baseline mitigation scenario; the
spread of the mitigation potential is larger at higher CO2 prices because the mitigation
shifts from agriculture to forestry sector (afforestation and energy crops plantations) that
competes with agriculture for land. Van Vuuren et al. (2009) compared GHG mitigation
potentials and costs (all GHG gasses and economy sectors) for 2030 obtained from six

Fig. 1 Illustration of influence of the marginal abatement cost curve uncertainty on resulting reduction of CO2

emissions in case of CO2 tax implementation (a) and on CO2 price in case of a cap-and-trade system (b)
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integrated assessment models (IAM) employing statistical analysis and combining the
results of different model studies and two bottom-up assessments; they found that the
spread of the mitigation potential estimated by the IAMs is larger at lower CO2 prices than
at higher CO2 prices and overall variation of the results is greater at lower CO2 prices. Fan
et al. (2017) studied MACC under integrated uncertainty (technology-investment cost,
energy-saving potential, and energy price) in China’s passenger car sector; they found that
the uncertainties significantly influence the CO2 abatement cost of emission reduction
technologies for the passenger cars; however, the uncertainties do not change the order of
considered technologies.

To estimate uncertainty of the REDD MACCs, researchers usually compare the results
of different models (e.g., Kindermann et al. 2008; den Elzen et al. 2009; Coren et al.
2011). Overmars et al. (2014) studied the opportunity costs of reducing deforestation
CO2 emissions using a global economic model LEITAP (acronym for Landbouw
Economisch Instituut Trade Analysis Project) interlinked with the Integrated Model to
Assess the Global Environment (IMAGE); the authors performed a sensitivity analysis of
the cost per tonne CO2 to the variation of land supply elasticity and land-labor/capital
substitution elasticity. According to their results, relative change of the cost per ton CO2

is the largest (167%) in Sub-Saharan Africa—the region with the lowest opportunity
costs of about 0.6 USD/tCO2, middle (35%) in Central and South America—the region
with the opportunity costs of about 5 USD/tCO2, and the least (14%) in South East
Asia—the region with the opportunity costs of about 50 USD/tCO2. Overmars et al.
(2014) did not consider the whole MACC, but only the minimum opportunity costs.
However, the uncertainties in REDD-related MACCs in relation to quality of input
parameters have not been assessed in the literature available in the field. One could
expect a little effect of model parameters deviation on MACC if the deviation is the same
at zero and non-zero model runs (in such case, the parameter deviation is a kind of bias
eliminated when calculating MACC). However, if the model is non-linear, the shift of
parameters can influence MACC.

This study is aimed at answering the following questions: what is the sensitivity of the
REDD-related MACCs to key socio-economic drivers and how uncertainties can impact GHG
abatement policies related to the forest sector?

In the study, we choose prices of wood and agriculture land as the important and
uncertain economic drivers of land use change, and quality of institutions as important
factor for controlling land use change. The wood and agriculture land prices represent
two economic alternatives of competitive land use, i.e., forestry for wood production or
agriculture for food, industrial crops, and energy crops production. According to the
analysis of IAM quantification of the SSPs by Fricko et al. (Fricko et al. 2017), the
different scenarios may result in changes of the agriculture commodity prices from − 60
to + 50% by 2100 comparing to 2005. GHG mitigation activities, in addition, may result
in an increase of the agriculture commodity prices by 110–570%. In its turn, corruption
(as an indicator of low quality of institutions) is one of the major threats to the
effectiveness of the REDD programs and it is present in the countries where REDD
programs are implemented (Sheng et al. 2016). For example, the corruption coefficient
used in the Global Forest Model (G4M) is estimated by Kindermann et al. (2006) as an
average of the percentile rank from Bpolitical stability,^ Bgovernment effectiveness,^ and
Bcontrol of corruption^ from (Kaufmann et al. 2005). The relative uncertainty of the
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estimates of the corruption coefficient components ranges from a few percent to much
over 100% for some countries where it is difficult to get reliable information (e.g., North
Korea, Afghanistan).

We apply G4M to study the sensitivity of MACCs to institutional quality represented
with a corruption coefficient and prices of wood and agriculture land. We also compare
the G4M-derived MACCs to the MACCs obtained using other models to understand how
much uncertainty in MACCs are due to differences in model assumptions versus input
data uncertainties. In the final section of this article, the possible influence of features of
the MACC uncertainties on the REDD mitigation policy design are considered.

G4M simulates afforestation, deforestation, and forest management directed at sustain-
able wood production, response of the aforementioned processes to CO2 price incentives
and respective CO2 emissions. It is widely used for estimation of REDD mitigation
potential (for example, contribution to the Eliasch Review (Eliasch 2008), quantification
of the IPCC RCP 8.5 scenario (Riahi et al. 2011), the World Bank assessment (Havlík et al.
2015), quantification of the shared socio-economic pathways (SSP) (Fricko et al. 2017),
and development of the European Union ( EU) projections (Böttcher et al. 2012; Capros
et al. 2013, 2016; Frank et al. 2016; Forsell et al. 2016)).

2 Method

2.1 G4M model

The G4M is a geographically explicit computer model to assess land use change and forest
management decision making. The decisions are calculated for 0.5 × 0.5° grid cells, which
approximately correspond to a 50 × 50 km grid taking sub-grid information into account as
described in (Kindermann et al. 2006, 2008; Gusti et al. 2008; Gusti and Kindermann 2011;
see also the model website: http://www.iiasa.ac.at/web/home/research/modelsData/G4M.en.
html).

Land use change decisions are modeled on the basis of comparing net present value of
forestry vis-à-vis the net present value of land use from agriculture. Deforestation is modeled
to take place in a grid, if the net present value of agriculture together with benefits from selling
wood after the clear-cut of the forest is greater than net present value of forestry (sustainable
production of wood during multiple rotation periods) multiplied by a hurdle coefficient. The
net present value of agriculture is modeled with an agricultural land price in a form of Cobb–
Douglas production function, in which agricultural suitability and population density are
independent variables (Benitez and Obersteiner 2006). In the model deforestation, afforesta-
tion and wood production are prohibited in conservation and nature protection areas. Affor-
estation takes place in a grid, in which there is land that can be afforested (i.e., not under
buildings and roads or secured for agriculture), the environmental conditions are suitable for
forestry, and the net present value of forestry multiplied by a hurdle coefficient is greater than
the net present value of agriculture. Economic policies, e.g., carbon tax in case of deforestation
or payments for carbon accumulated additionally in forest ecosystem in case of a/reforestation,
add value to the maintenance of keeping the forest carbon stock. The hurdle coefficient as well
as country-specific adjustment factors for deforestation and afforestation rates are derived from
applying a calibration method to match historic predictions to FAO and IPCC values (Gusti
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et al. 2008). The deforestation rate (amount of forest land that can be converted to agricultural
land during 1 year), and afforestation rate (amount of agricultural land on which forest can be
planted during 1 year) are modeled to be also a function of gross domestic product per capita
(GDP), population density, and agricultural suitability (Kindermann et al. 2006, 2008; Gusti
and Kindermann 2011).

Forest management decisions are made to match simulated wood production for each
country to endogenously determined wood demand (provided by GLOBIOM in current
study). Forest management options are adjustment of rotation time, thinning intensity, and
variation of forest area used for sustainable wood production (Gusti 2010).

Emissions from deforestation include emissions from forest biomass, dead organic
matter (immediate loss of dead wood and decomposition of litter), and decomposition of
up to 40% of soil organic matter. To assess carbon losses from deforestation, all carbon
pools over time were tracked. Likewise, the evolution of carbon pools resulting from
afforestation are tracked over time for all respective carbon pools. Emissions due to forest
management are estimated as living biomass carbon stock change over time reflecting
forest growth rate dependence on time and reaction on logging. Formal description of the
model is presented in the online resource.

2.2 Studying MACCs sensitivity to the variation of G4M input parameters

The sensitivity of MACCs to the variation of three G4M parameters selected in the consul-
tations among the project1 partners are studied: corruption coefficient (cr), wood price (w)
[USD/m3], and agriculture land price (l) [USD/ha]. The corruption coefficient measures the
efficiency of incurred costs for abatement: cr = 1 (highest efficiency) means that no abatement
costs are consumed by corruption and cr = 0 (lowest efficiency) means that all costs are
consumed by corruption.

The G4M model ran for a number of CO2 price scenarios: initial prices starting in 2020 (0,
1, 3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120 USD/tCO2) and rising 5% per year (that
results in CO2 price range of 4–520 USD/ton CO2 in 2050) using standard parameter values as
in Kindermann et al. (2008) and Gusti and Kindermann (2011). For the purposes of sensitivity
analysis, the values cr, w, and l mentioned above are varied: decreased/increased by 1, 2.5, 5,
10, 50, and 90% (only single parameter was changed during each run). For a year within the
range 2020–2050, a MACC is defined as a difference of the biomass CO2 emissions at zero
CO2 price and a non-zero CO2 price. The emissions include afforestation, deforestation, and
forest management components. The parameter deviation was applied to all CO2 price runs,
thus serving as a bias for MACC. For the run, G4M setup for quantification of SSP scenarios
was used (Fricko et al. 2017), in particular G4M and GLOBIOM (Global Biosphere Manage-
ment) (http://www.globiom.org/) models have been interlinked as in the IIASA Integrated
Assessment Framework, population and GDP follow SSP2 scenario (Dellink et al. 2017),
wood demand, regional agriculture land prices, and wood prices are estimated by GLOBIOM
model under assumption of bioenergy demand of 50PJ/year, country-specific afforestation, and
deforestation rates have been calibrated to match respective 2000–2010 average data obtained
from FAO FRA 2010.

1 The project BOptions Market and Risk-Reduction Tools for REDD+^ funded by the Norwegian Agency for
Development Cooperation under agreement number QZA-0464 QZA-13/0074.
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The 12 MACC variations for each parameter were calculated. The results were assigned the
following notations: crpV, crmV, wpV, wmV, lpV, and lmV, where p means an increase of a
parameter, mmeans a decrease of a parameter, and Vmeans 1, 2.5, 5, 10, 50, or 90% change of
the parameter. Because of the limited space of the paper, detailed analysis of the MACC
sensitivities to 10, 50, and 90% variation of the parameters globally and for three countries,
Brazil, Indonesia, and Mexico, for the year 2030 are presented. Additional information is
provided in the online resource.

3 Results

3.1 Brazil

At 1–5% variation of the parameters deviations of the MACC of total biomass, land use
change and forestry emissions for Brazil follow the shape of respective deviations at 10%
variation of the parameters with smaller amplitude.

At 10% variation of the parameters, the MACC is most sensitive when CO2 price is 5
USD/tCO2 (Fig. S1a–c in the online resource). At this CO2 price, increase of the
corruption coefficient (means less abatement costs are consumed by corruption) has the
highest effect on the MACC—the efficiency of abatement costs increase by 57 MtCO2/
year (Fig. S1c in the online resource). The sensitivity to the parameters diminishes very
rapidly with the CO2 price increase. Decrease of the corruption coefficient by 10%
causes deviation of MACC to − 45 MtCO2/year. Agriculture land price variation by
10% has the largest effect at 10–20 and over 80 USD/tCO2 (deviation of MACC up to 42
MtCO2/year) (Fig. S1a in the online resource), while variation of wood price has the
largest effect for the CO2 price range 25–60 USD/tCO2 (deviation of MACC up to 16
MtCO2/year) (Fig. S1b and Table S1 in the online resource).

At 50% variation of the parameters, the MACC is most sensitive when CO2 price is 10
USD/tCO2 (Fig. S1a–c in the online resource). At this CO2 price, decrease of the corruption
coefficient causes deviation of the MACC by − 444 MtCO2/year (Fig. S1c in the online
resource). The effect of the corruption coefficient variation diminishes rapidly and after 25
USD/tCO2 is close to zero. At CO2 prices over 25 USD/tCO2, wood (Fig. S1b in the online
resource) and agricultural land (Fig. S1a in the online resource) prices have a non-zero effect
(deviation of MACC up to 7 MtCO2/year). The corruption coefficient has the largest effect on
MACC across the three parameters at 3 and 10–25 USD/tCO2, wood price—at 1 and 40–120
USD/tCO2, and agriculture land price—at 5 and 10 MtCO2/year. Wood price variation causes
maximum deviation of MACC (63 MtCO2/year) at 5 USD/tCO2. Agriculture land price causes
deviation of MACC (407 MtCO2/year) at 5 USD/tCO2. For more information, see Table S2 in
the online resource.

At 90% variation of the parameters, the MACC is most sensitive at 15 USD/tCO2 (Fig.
S1a–c in the online resource). At this CO2 price, decrease of the corruption coefficient
causes deviation of the MACC by − 644 MtCO2/year (Fig. S1c in the online resource). The
effect of the corruption coefficient variation diminishes slowly and has the highest impact
on MACC at 1, 10–100 USD/tCO2. Agriculture land price has a bit lower impact with
maximum at CO2 price 3 USD/tCO2 (Fig. S1a in the online resource); it prevails the corruption
coefficient effect at 3, 5, and 120 USD/tCO2. Wood price reaches its maximum effect on
MACC (128MtCO2/year) at CO2 price 5 USD/tCO2 (Fig. S1b in the online resource), while the
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agriculture land price—at CO2 price 3 USD/tCO2 (562MtCO2/year). Formore information, see
Table S3 in the online resource.

The corruption coefficient has the largest impact on the MACC at all levels of the parameter
changes. Increasing the amplitude of the parameter variation causes the maximum impact
shifts from 5 USD/tCO2 to 15 USD/tCO2. Agriculture land and wood prices have a noticeable
effect at very low and CO2 prices greater than 30 USD/tCO2. In the case of 10% variation, all
the three parameters have the strongest impact at 5 USD/tCO2. Increase of the parameter
variation amplitude defuses the CO2 price at which individual parameters cause maximum
deviation of MACC (Tables S1–S3 in the online resource).

In the case of Brazil, the sensitivity of MACC related to emissions from deforestation
determines the shape and magnitude of the sensitivity of the total biomass emission MACC.
For the 10% parameters variations, the sensitivity of the forest management MACC is
considerably smaller than the MACC related to emissions from deforestation for variations
of the corruption rate coefficient (57 vs. 7 MtCO2/year) and agriculture land price (40 vs. 1.8–2
MtCO2/year), but it is comparable for the wood price variation (13 vs. 8 MtCO2/year).
However, the maximum of the forest management MACC sensitivity is shifted to 3 USD/
tCO2 for the wood price and corruption coefficient and to 10 USD/tCO2 for agriculture land
price variations. Sensitivity of the afforestation emission MACC to the studied parameters is of
one-two orders of magnitude smaller than the other two components of the total emission
MACC and has a different shape; it increases linearly with CO2 price increase for the
agricultural land price and wood price, but has a maximum at 40 USD/tCO2 for the corruption
coefficient. From the point of view of MACC non-linearity by the parameters, the forest
management MACC has the most complex shape.

3.2 Indonesia

At 1–10% variation of the parameters, the MACC is most sensitive when CO2 price is 5 USD/
tCO2 (Fig. S2a–c in the online resource). In the case of 10% variation of the parameters at this
CO2 price, increase of agriculture land price has the highest effect on the MACC—the
efficiency of abatement costs increases by 28 MtCO2/year (Fig. S2a in the online resource).
Decrease of the corruption coefficient causes a bit less deviation of the MACC giving
additional abatement of 27 MtCO2/year (Fig. S2c in the online resource). The sensitivity to
the parameters diminishes very rapidly with the CO2 price increase. Unlike Brazil, deviation of
the MACC has a spike at a CO2 price of 120 USD/tCO2 with the highest negative sensitivity to
the corruption coefficient yielding 9 MtCO2/year less abatement if the corruption coefficient is
decreased by 10%. The increase of wood and agriculture land prices causes shifting of the
MACC by − 7 and 8 MtCO2/year, respectively, at 120 USD/tCO2 (Fig. S2b in the online
resource). Across the parameters, the corruption coefficient has the highest impact on the
MACC at 10, 40–60, and 120 USD/tCO2, agriculture land price—at 1–5, 15–25, and 80 USD/
tCO2. Wood price deviation has the maximum effect only at 30 and 100 MtCO2/year (see
Table S4 in the online resource).

At 50% variation of the parameters, the MACC is most sensitive when the CO2 price is 3
USD/tCO2 (Fig. S3a–c in the online resource). At this CO2 price, a decrease of agriculture land
price causes deviation of the MACC by 177 MtCO2/year (Fig. S3a in the online resource).
Agriculture land price increase has maximum effect on MACC across the three parameters at
the CO2 prices from 1 to 5 USD/tCO2 then it decreases rapidly to 3–9 MtCO2/year (see
Table S5 in the online resource). Decrease of the corruption coefficient causes deviation of the
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MACC from 138 MtCO2/year at 5 USD/tCO2 to − 23 MtCO2/year at 120 USD/tCO2 (Fig. S2c
in the online resource); it has the strongest impact on MACC across the parameters at 10–30
and 80–120 USD/tCO2. Wood price increase has the largest effect across the parameters (13–
22 MtCO2/year) at CO2 prices from 40 to 60 USD/tCO2. Wood price variation reaches its
maximum effect on the MACC (22 MtCO2/year) at CO2 price 50 USD/tCO2 (Fig. S2b in the
online resource).

At 90% variation of the parameters, the MACC is most sensitive when CO2 price is 1 USD/
tCO2 (Fig. S2a–c in the online resource). At this CO2 price, a decrease of agriculture land price
causes deviation of the MACC by 305 MtCO2/year (Fig. S2a) in the online resource. The
agriculture land price increase has a maximum effect on the MACC across the three parameters
at CO2 prices from 1 to 5 USD/tCO2, then it decreases rapidly to 32–51 MtCO2/year (see
Table S6 in the online resource). A decrease of the corruption coefficient causes rapid increase
of deviation of the MACC from − 3 MtCO2/year at 1 USD/tCO2 to − 287 MtCO2/year at 25
USD/tCO2, then slow decrease of the magnitude to − 60 MtCO2/year at 120 USD/tCO2 (Fig.
S2c in the online resource); it has the strongest impact on MACC across the parameters at 10–
120 USD/tCO2. A wood price makes a maximum impact on the MACC (29 MtCO2/year) at
CO2 price 3 USD/tCO2 (Fig. S2b in the online resource).

An agriculture land price decrease has the largest impact on MACC at all levels of the
parameter changes. Increasing the amplitude of the parameter variation, the maximum impact
shifts from 5 USD/tCO2 to 1 USD/tCO2. The corruption coefficient has the largest impact on
MACC at CO2 prices greater than 5 USD/tCO2 for 50 and 90% variation of the parameters
(see Tables S4–S6 in the online resource).

3.3 Mexico

At 1–10% variation of the parameters, the MACC is most sensitive when the CO2 price is 10
USD/tCO2 (Fig. S3a–c in the online resource). In the case of 10% variation of the parameters
at this CO2 price, a decrease of the corruption coefficient causes deviation of the MACC by − 9
MtCO2/year, while an increase of the corruption coefficient gives an additional abatement of 8
MtCO2/year (Fig. S3c in the online resource). The sensitivity to the parameters diminishes
very rapid with the CO2 price increase. Across the parameters, the corruption coefficient has
the highest impact on the MACC at 5–120 USD/tCO2, wood price—at 1 and 3 USD/tCO2 (see
Table S7 in the online resource). The agriculture land price reaches its maximum impact on
MACC (− 5 MtCO2/year) at 10 USD/tCO2 (Fig. S3a in the online resource), wood price
reaches its maximum impact on MACC (−5 MtCO2/year) at 15 USD/tCO2 (Fig. S3b in the
online resource).

At 50% variation of the parameters, the MACC is most sensitive when the CO2 price is 15
USD/tCO2 (Fig. S3a–c in the online resource). At this CO2 price, a decrease of corruption
coefficient causes deviation of MACC by − 51 MtCO2/year (Fig. S3c in the online resource).
The corruption coefficient has the highest effect on MACC across the parameters at 3–50
USD/tCO2, the agriculture land price—at 60–120 USD/tCO2 and the wood price—at 1 USD/
tCO2 (see Table S8 in the online resource). Agriculture land price reaches its maximum impact
on MACC (27 MtCO2/year) at 10 USD/tCO2 (Fig. S3a in the online resource), wood price
reaches its maximum impact on MACC (22 MtCO2/year) at 10 USD/tCO2 (Fig. S3b in the
online resource).

At 90% variation of the parameters, the MACC is most sensitive at 25 USD/tCO2 (Fig.
S3a–c in the online resource). At this CO2 price, decrease of the corruption coefficient
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causes deviation of the MACC by − 70 MtCO2/year (Fig. S3c in the online resource). The
effect of the corruption coefficient variation diminishes slowly and has the highest impact on
MACC across the parameters at 3 and 10–120 USD/tCO2 (see Table S9 in the online
resource). An agriculture land price has a lower impact on the MACC, with a maximum of
15 USD/tCO2 (31 MtCO2/year) (Fig. S3a in the online resource), exceeding the impacts of
variations of the corruption coefficient and the wood price at 5 USD/tCO2. The wood price has
the highest effect across the parameters at 1 USD/tCO2 and reaches its maximum impact (33
MtCO2/year) at 10 USD/tCO2 (Fig. S3b in the online resource).

Similar to Brazil, the corruption coefficient has the largest impact on the MACC at all levels
of the parameter changes. Increasing the amplitude of the parameter variation, the maximum
impact shifts from 10 USD/tCO2 to 25 USD/tCO2. Agriculture land price makes a noticeable
effect on the CO2 prices greater than 3 USD/tCO2 at 50 and 90% parameter variations. An
increase of the parameter variation amplitude defuses the CO2 price at which individual
parameters cause maximum deviation of MACC (see Tables S7–S9 in the online resource).

3.4 Global

At 1–5% variation of the parameters, deviation of the global MACC follows the shape of
respective deviations at 10% variation of the parameters but the amplitude is smaller. At 10%
variation of the parameters, the global MACC is most sensitive when CO2 price is 5 USD/
tCO2 (Fig. 2a–c). At this CO2 price, a decrease of the corruption coefficient makes the highest
impact on the MACC—the efficiency of abatement costs decreases by 230 MtCO2/year (Fig.
2c). An increase of the corruption coefficient has a slightly smaller effect on the MACC—the
abatement increases by 229 MtCO2/year. The agriculture land price variation influences the
MACC considerably—a decrease of the land price yields 172 MtCO2/year higher abatement
while increase of the land price decreases the abatement by 122 MtCO2/year (Fig. 2a). Global
MACC’s deviation from a baseline (all parameters cr, w, l unchanged) diminishes with the
increasing CO2 price slower than the countries’MACCs considered in the study. The variation
of corruption coefficient makes the maximum impact on the global MACC across the three
parameters at CO2 prices 1–30 and 80 USD/tCO2 (see Table S10 in in the online resource).
The variation of wood price makes the maximum impact on MACC across the three param-
eters at 40–60 and 100–120 USD/tCO2. The wood price reaches its maximum impact on
MACC at 15 USD/tCO2 (Fig. 2b).

At 50% variation of the parameters, the global MACC is most sensitive when CO2 price is
5 USD/tCO2 (Fig. 2a–c). At this CO2 price, a decrease of the corruption coefficient causes
deviation of the MACC by − 1310 MtCO2/year (Fig. 2c). The effect of the corruption
coefficient variation diminishes by 15 times to − 75 MtCO2/year at 120 USD/tCO2. The
corruption coefficient has the largest impact on MACC across the parameters at 1 and 5–30
USD/tCO2 (see Table S11 in the online resource). The wood price has a considerable effect on
MACC at all CO2 prices with maximal value of 531 MtCO2/year at 5 USD/tCO2 (Fig. 2b) and
has the largest effect across the parameters at 40–120 USD/tCO2. The agriculture land price
has the maximum impact on MACC (903 MtCO2/year) at 3 USD/tCO2 (Fig. 2a) when it
overcomes the effect of the other parameters.

At 90% variation of the parameters, the MACC is most sensitive at 20 USD/tCO2

(Fig. 2a–c). At this CO2 price, decrease of the corruption coefficient causes deviation of the
MACC by − 3477 MtCO2/year (Fig. 2a). The effect of the corruption coefficient variation
diminishes slowly and has the highest impact on MACC across the parameters at 5–120 USD/
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tCO2 (see Table S12 in the online resource). The agriculture land price has a lower impact with
the maximum of 5 USD/tCO2 (1699 MtCO2/year) (Fig. 2a), exceeding the impact of the other

Fig. 2 Sensitivity of marginal abatement cost curve for total biomass CO2 emissions to deviations of agriculture
land price (a), wood price (b), and corruption coefficient (c) globally in 2030
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parameters at 1 and 3 USD/tCO2. The wood price reaches its maximum impact onMACC (733
MtCO2/year) at 10 USD/tCO2 (Fig. 2b).

The corruption coefficient has the largest impact on the MACC at all levels of the parameter
changes. Increasing the amplitude of the parameter variation, the maximum impact shifts from
5 USD/tCO2 (at 10 and 50% variation) to 20 USD/tCO2 (at 90% variation). The wood price
has relatively even impact at all CO2 prices, while agriculture land price has two picks—higher
at low CO2 prices and lower at high CO2 prices. Increase of the parameter variation amplitude
to 90% defuses the CO2 price at which individual parameters cause maximum deviation of
MACC (see Tables S10–S12 in the online resource). MACCs for 0–90% deviations of the
agriculture land price, wood price, and the corruption coefficient are presented in Fig. 3a–c.

4 Discussion

The parameter deviation was applied to all CO2 price runs, thus serving a bias for MACC. In
this case, the MACC deviation is caused by the model non-linearity across CO2 prices, i.e.,
different sensitivity of the emissions to the same deviation of a parameter at zero and non-zero
CO2 prices. For the studied countries and globally, the emission response to the alteration of
agriculture land price is very high at CO2 prices 3–10 USD/tCO2 symmetrically to negative
and positive deviations of the parameter (see Fig. 4 for the global case).

The emission response to wood price alteration has different shapes in the studied countries,
while the global case incorporates features of all countries (Fig. 5). In Brazil, the sensitivity is
high at all CO2 prices but at the prices 1–5 USD/tCO2, the sensitivity changes its sign (with a
maximum at 10 USD/tCO2). The Banomaly^ is explained by the fact that at some CO2 prices
an increase of wood price causes an increase of deforestation rate. This is because a part of the
deforested wood is sold that pushes a switching from forestry to agriculture. This is the effect
of the interaction between agricultural land price, CO2 price, and wood price. The effect comes
from the decision-making algorithm of G4M: conversion from forest to agriculture is based on
the highest level of net present value (NPV) that can be achieved by one of these land use
alternatives. In this case, a higher wood price is not enough for economically sustainable
forestry and (as a one-time profit from selling the wood) adds an incentive for moving to
agriculture (deforestation) (Gusti and Kindermann 2011). In Indonesia, the emission response
to wood price is variable over the CO2 prices with maximum deviations around 3 and 60 USD/
tCO2. In Mexico, the emission response to wood price is symmetrical by the sign of the
parameter variation with a maximum of 10–15 USD/tCO2. For Mexico, the same effect of
increasing deforestation with increasing wood price at 5–10 USD/tCO2 is observed. The global
picture communicates a similar message (Fig. 5): for the carbon price of approximately 10
USD/tCO2, an increase of wood price increases deforestation, compared to a baseline corre-
sponding to that carbon price (10 USD/tCO2).

The emission response to a variation of the corruption coefficient has a similar shape—with
a sharp maximum deflection of the emissions at CO2 prices 3–10 USD/tCO2 when the
corruption coefficient increases (see Fig. 6 for the global case). When the corruption coeffi-
cient decreases, the sensitivity is high at a wide range of CO2 prices, reaching its maximum if
the corruption coefficient decreases by 90%.

The G4M model is non-linear on, and sensitive to, the variation of the cr, w, and l model
parameters. The existence of a range of CO2 prices under which the MACCs are very much
sensitive to the variation of model parameters is, probably, model-specific and connected to the
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simulation of decision making and values of NPVs of the alternative land uses. However, it
seems logical that the mitigation potential is less sensitive at CO2 prices corresponding to

Fig. 3 Marginal abatement cost curves for 0–90% deviations of agriculture land price (a), wood price (b), and
the corruption coefficient (c)
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(close-to) the vertical part of the MACC (where an increment of CO2 price results in very little
or no change of the mitigation). This is especially relevant to the corruption coefficient that
directly impacts the mitigation costs.

Globally, the mitigation amount and the costs modeled by G4M falls within the estimates,
provided by the other studies (for example, see Table 1 and an overview by Coren et al. (2011)
for more data). Compared to the MACCs for avoided deforestation constructed using three
models, the Dynamic Integrated Model of Forestry and Alternative Land Use (DIMA; it is
based on spatially explicit deforestation simulation mechanism similar to G4M; however, it
was calibrated only globally to net deforestation data from the FAO Forest Resource Assess-
ment as of 2005), a global dynamic partial equilibrium model GCOMAP (acronym for
Generalized Comprehensive Mitigation Assessment Process; it simulates afforestation and
deforestation in 10 world regions), and the Global Timber Model (GTM; a dynamic optimi-
zation model that optimizing forest area, forest age class distribution, and forest management
in 250 timber types globally) (Kindermann et al. 2008), it is found that G4M estimates a little
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bit higher mitigation than GTM (the most optimistic of the three models) at CO2 prices below
20 USD/tCO2. One of the reasons of the higher mitigation estimates by G4M is 5%/year rising
CO2 price comparing to the constant CO2 price in the other studies.

The difference between the smallest and the largest estimates by the three models varies
from 1.5 to 2.3 GtCO2/year with a maximum at 20 and 25 USD/tCO2 (Diff 1 in Table 1). If the
G4M results are included, the difference increases only at 5, 10, and 15 USD/tCO2 with a
maximum of 2.4 GtCO2/year, at 15 USD/tCO2 (Diff 2 in Table 1). The absolute values of the
MACC deviation are due to the 10% variation of G4M input parameters, which are one order
of magnitude lower at 5 USD/tCO2 and two orders of magnitude lower at higher CO2 prices
than the differences due to the application of the different models. The absolute values of the
MACC deviation due to the 50% variation of the G4M input parameters are of the same order
of magnitude as the inter-model differences at CO2 prices below 15 USD/tCO2. In the case of
90% variation of the parameters, the MACC deviations are greater than the inter-model
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Table 1 Mitigation costs, respective mitigation of CO2 emissions in 2030, GtCO2/year, from avoided defores-
tation estimated by DIMA, GCOMAP, GTM (derived from Fig. 3 in Kindermann et al. 2008, p.10305), and
G4M models (current study); difference of the CO2 emission mitigation estimates of the first three models
without G4M (Diff 1), GtCO2/year, and including G4M (Diff 2); maximal deviation of MACC, GtCO2/year, at
10% variation (G4M10), 50% variation (G4M50), and 90% variation (G4M90) of G4M input parameters

CO2 price,
USD/tCO2/Item

DIMA GCOMAP GTM G4M Diff 1 Diff 2 G4M10 G4M50 G4M90

5 0.2 0.8 1.7 1.8 1.5 1.6 0.19 1.1 1.8
10 0.6 1.9 2.5 2.9 1.9 2.3 0.08 1.1 2.5
15 0.8 2.1 3 3.2 2.2 2.4 0.1 0.6 2.7
20 1.1 2.3 3.4 3.4 2.3 2.3 0.06 0.5 2.8
25 1.2 2.5 3.5 3.5 2.3 2.3 0.04 0.4 2.7
30 1.5 2.8 3.6 3.6 2.1 2.1 0.04 0.3 2.6
40 1.7 3.2 3.7 3.6 2 2 0.04 0.3 2.1
50 2 3.3 3.8 3.6 1.8 1.8 0.03 0.3 1.8
70 2.1 3.4 3.8 3.7 1.7 1.7 0.03 0.3 1.5
100 2.1 3.4 3.8 3.7 1.7 1.7 0.03 0.3 0.8
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differences at CO2 prices below 50 USD/tCO2. From the comparison, it can be concluded that
the quality of input data may be as important as the application of a few different models for
construction of the MACCs. This conclusion is true at least in the case of G4M, as well as for
the modeling study of the GHG mitigation potential in agriculture and forestry sectors in the
USA by Schneider and McCarl (2006) who report a variation of the economic mitigation
potential from − 55 to 85% depending on the modeling assumptions.

In general, the results found in this study are in line with Kesicki (2013), who made a
sensitivity analysis of MACCs for UK transport sector to fossil fuel prices and van Vuuren
et al. (2009), who compared the results of 6 IAMs, statistical analysis combining results of
different model studies, and two bottom-up assessments, that estimates of economic mitigation
potentials are more robust at higher CO2 prices. However, in the study by Schneider and
McCarl (2006), the bias of the mitigation potential is greater at higher CO2 prices because
mitigation activities shift to afforestation and energy crop plantations which compete for
agriculture land and distort the market of agriculture commodities. The reason for the
contrasting results by Schneider and McCarl (2006) may be because Schneider and McCarl
(2006) considered GHG mitigation policies in a single country where considered in the study
mitigation measures in forestry are more expensive than in agriculture.

The results of the MACCs sensitivity to variation of the G4M model parameters and the
model inter-comparison analysis suggest some implications for the design of REDDmitigation
policies. In particular, medium-term mitigation policies, which usually apply low CO2 prices,
may be more vulnerable to the uncertainty of information on corruption and the quality of
governance in target countries. This may occur because the estimates of economic mitigation
potential are more sensitive to the financial efficiency at low CO2 prices. The uncertainty of
input data and model assumptions has less impact on the MACCs at high CO2 prices that are
usually employed in designing long-term mitigation policies. Therefore, we would advise
policymakers to develop policies taking into account quality of institutions in target countries.
However, more research, along with the application of other models, is needed to improve the
validity of these findings, as they are currently based on a sensitivity study exploiting a single
model (G4M) and key socioeconomic parameters in this model and supported by the analysis
of a few available published studies.

5 Conclusions

Because of the G4M model non-linearity, the MACCs are sensitive to the variation of the
model parameters, irrespective of the fact that the same parameter variations are applied in
both zero-CO2 price and non-zero-CO2 price runs. Since the integrated assessment models in
general are complex computer models with non-linearity, one may expect all MACCs con-
structed using such models are sensitive to the variation of the model parameters.

The MACCs constructed using G4M are much more sensitive to parameter variation at a
certain range of CO2 prices, usually low CO2 prices. The MACCs for total biomass CO2

emissions constructed using G4M are most sensitive to the variation of corruption coefficient
(a combination of Bpolitical stability,^ Bgovernment effectiveness,^ and Bcontrol of
corruption^ indexes; measuring the efficiency of use of abatement costs) and, secondly, to
agriculture land price. The uncertainties resulting from modeling assumptions are as important
as the quality of input data. This study and most of the considered published results indicate
that with the high CO2 price, MACCs are more robust.
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Based on the results of this study, it is suggested that it is vital to consider MACCs
compatible with the institutions in place when designing medium-term mitigation policies
with generally low CO2 prices. When designing long-term mitigation policy characterized by
high CO2 prices, the sensitivity of the MACCs to the considered drivers is of secondary
importance. These statements must be taken with caution as they are based on the sensitivity
study of one model (G4M) and key socioeconomic parameters in this model and a limited
number of publications containing data from which the respective information was extracted.
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